Shop-Wechsel

Der Warenkorb wird nicht übernommen.

Zum Privatkunden Shop

Superkondensatoren statt Batterien

Leistungsfähige Graphen-Verbindungen für hocheffiziente Superkondensatoren

Energiespeicherung bringt man üblicherweise mit Batterien und Akkus in Verbindung, die die Energie für elektronische Geräte bereitstellen. Doch in Laptops, Kameras, Handys oder Fahrzeugen werden neben Batterien mittlerweile auch immer mehr sogenannte Superkondensatoren eingebaut.
Anders als Batterien können sie sehr schnell große Energiemengen speichern und ebenso schnell wieder abgeben. Bremst beispielsweise ein Zug bei der Einfahrt in den Bahnhof ab, speichern Superkondensatoren die Leistung und stellen sie wieder bereit, wenn der Zug beim Anfahren sehr schnell sehr viel Energie braucht.
Ein Problem der Superkondensatoren war bislang jedoch ihre geringe Energiedichte. Während Lithiumionen-Akkumulatoren eine Energiedichte von bis zu 265 Wattstunden pro Kilogramm (Wh/kg) erreichen, liefern bisherige Superkondensatoren lediglich ein Zehntel davon.

Nun hat ein Team um den TUM-Chemiker Roland Fischer ein neuartiges, leistungsfähiges und dabei nachhaltiges Graphen-Hybridmaterial für Superkondensatoren entwickelt. Es dient als positive Elektrode im Energiespeicher. Die Forscher kombinierten es mit einer schon bewährten, auf Titan und Kohlenstoff basierenden negativen Elektrode.
Der neue Energiespeicher erzielt damit nicht nur eine Energiedichte von bis zu 73 Wh/kg, was in etwa der Energiedichte eines Nickel-Metallhydrid Akkus entspricht, sondern leistet mit seiner Leistungsdichte von 16 kW/kg auch deutlich mehr als die meisten anderen Superkondensatoren. Das Geheimnis des neuen Superkondensators ist die Kombination verschiedener Materialien. Chemiker nennen den Superkondensator daher „asymmetrisch“. Die Forscher setzen dabei auf eine neue Strategie, um die Leistungsgrenzen gängiger Materialien zu überwinden, auf sogenannte Hybridmaterialien. „Die Natur ist voll von hochkomplexen, evolutionär optimierten Hybridmaterialien. „Knochen und Zähne sind Beispiel dafür. Ihre mechanischen Eigenschaften wie Härte oder Elastizität hat die Natur durch Kombination verschiedener Materialien optimiert“, sagt Roland Fischer.

Die abstrakte Idee der Kombination von Basismaterialien übertrug das Forschungsteam auf die Superkondensatoren. Sie verwendeten dabei als Grundlage der neuartigen positiven Elektrode des Speichers chemisch verändertes Graphen und verbanden es mit einer nanostrukturierten metallorganischen Gerüstverbindung, einem sogenannten metal organic framework (MOF).

Entscheidend für die Leistungsfähigkeit der Graphen-Hybride sind einerseits eine große spezifische Oberfläche und steuerbare Porengrößen, andererseits eine hohe elektrische Leitfähigkeit. „Die hohe Leistungsfähigkeit des Materials basiert auf der Kombination des mikroporösen MOFs mit der leitfähigen Graphen-Säure“, erklärt Erstautor Jayaramulu Kolleboyina, ehemaliger Gastwissenschaftler bei Roland Fischer.
Für gute Superkondensatoren ist eine große Oberfläche wichtig, dort kann sich eine entsprechend große Anzahl von Ladungsträgern innerhalb eines Materials ansammeln – das ist das Grundprinzip der Speicherung elektrischer Energie.
Den Forschern gelang es, durch geschicktes Materialdesign die Graphensäure chemisch mit den MOFs zu verknüpfen. Die entstehenden Hybrid-MOFs haben sehr große innere Oberflächen von bis zu 900 Quadratmetern pro Gramm, und sind als positive Elektrode in einem Superkondensator extrem leistungsfähig.

Weitere Informationen finden Sie hier

Graphen-Hybride (links) aus metallorganischen Netzwerken (metal organic frameworks, MOF) und Graphensäure ergeben eine hervorragende positive Elektrode für Superkondensatoren, die damit eine ähnliche Energiedichte erreichen, wie Nickel-Metallhydrid-Akkus.
Bild: J. Kolleboyina / IITJ